# Linear algebra

Tools of linear algebra.

## Polynomials

class sknetwork.linalg.Polynome(*args, **kwargs)[source]

Polynome of an adjacency matrix as a linear operator

$$P(A) = \alpha_k A^k + ... + \alpha_1 A + \alpha_0$$.

Parameters

• coeffs (np.ndarray) – Coefficients of the polynome by increasing order of power.

Examples

>>> from scipy import sparse
>>> from sknetwork.linalg import Polynome
>>> x = np.ones(2)
>>> polynome.dot(x)
array([3., 3.])
>>> polynome.T.dot(x)
array([3., 3.])


Notes

The polynome is evaluated using the Ruffini-Horner method.

property H

Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex matrix, the Hermitian adjoint is equal to the conjugate transpose.

Returns

A_H – Hermitian adjoint of self.

Return type

LinearOperator

property T

Transpose this linear operator.

Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of self.transpose().

Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex matrix, the Hermitian adjoint is equal to the conjugate transpose.

Returns

A_H – Hermitian adjoint of self.

Return type

LinearOperator

dot(x)

Matrix-matrix or matrix-vector multiplication.

Parameters

x (array_like) – 1-d or 2-d array, representing a vector or matrix.

Returns

Ax – 1-d or 2-d array (depending on the shape of x) that represents the result of applying this linear operator on x.

Return type

array

matmat(X)

Matrix-matrix multiplication.

Performs the operation y=A*X where A is an MxN linear operator and X dense N*K matrix or ndarray.

Parameters

X ({matrix, ndarray}) – An array with shape (N,K).

Returns

Y – A matrix or ndarray with shape (M,K) depending on the type of the X argument.

Return type

{matrix, ndarray}

Notes

This matmat wraps any user-specified matmat routine or overridden _matmat method to ensure that y has the correct type.

matvec(x)

Matrix-vector multiplication.

Performs the operation y=A*x where A is an MxN linear operator and x is a column vector or 1-d array.

Parameters

x ({matrix, ndarray}) – An array with shape (N,) or (N,1).

Returns

y – A matrix or ndarray with shape (M,) or (M,1) depending on the type and shape of the x argument.

Return type

{matrix, ndarray}

Notes

This matvec wraps the user-specified matvec routine or overridden _matvec method to ensure that y has the correct shape and type.

rmatmat(X)

Performs the operation y = A^H * x where A is an MxN linear operator and x is a column vector or 1-d array, or 2-d array. The default implementation defers to the adjoint.

Parameters

X ({matrix, ndarray}) – A matrix or 2D array.

Returns

Y – A matrix or 2D array depending on the type of the input.

Return type

{matrix, ndarray}

Notes

This rmatmat wraps the user-specified rmatmat routine.

rmatvec(x)

Performs the operation y = A^H * x where A is an MxN linear operator and x is a column vector or 1-d array.

Parameters

x ({matrix, ndarray}) – An array with shape (M,) or (M,1).

Returns

y – A matrix or ndarray with shape (N,) or (N,1) depending on the type and shape of the x argument.

Return type

{matrix, ndarray}

Notes

This rmatvec wraps the user-specified rmatvec routine or overridden _rmatvec method to ensure that y has the correct shape and type.

transpose()

Transpose this linear operator.

Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of self.transpose().

## Sparse + Low Rank

class sknetwork.linalg.SparseLR(*args, **kwargs)[source]

Class for matrices with “sparse + low rank” structure. Example:

$$A + xy^T$$

Parameters
• sparse_mat (scipy.spmatrix) – Sparse component. Is converted to csr format automatically.

• low_rank_tuples (list) – Single tuple of arrays of list of tuples, representing the low rank components [(x1, y1), (x2, y2),…]. Each low rank component is of the form $$xy^T$$.

Examples

>>> from scipy import sparse
>>> from sknetwork.linalg import SparseLR
>>> slr = SparseLR(adjacency, (np.ones(2), np.ones(2)))
>>> x = np.ones(2)
>>> slr.dot(x)
array([3., 3.])
>>> slr.sum(axis=0)
array([3., 3.])
>>> slr.sum(axis=1)
array([3., 3.])
>>> slr.sum()
6.0


References

De Lara (2019). The Sparse + Low Rank trick for Matrix Factorization-Based Graph Algorithms. Proceedings of the 15th International Workshop on Mining and Learning with Graphs (MLG).

property H

Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex matrix, the Hermitian adjoint is equal to the conjugate transpose.

Returns

A_H – Hermitian adjoint of self.

Return type

LinearOperator

property T

Transpose this linear operator.

Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of self.transpose().

Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex matrix, the Hermitian adjoint is equal to the conjugate transpose.

Returns

A_H – Hermitian adjoint of self.

Return type

LinearOperator

astype(dtype: Union[str, numpy.dtype])[source]

Change dtype of the object.

dot(x)

Matrix-matrix or matrix-vector multiplication.

Parameters

x (array_like) – 1-d or 2-d array, representing a vector or matrix.

Returns

Ax – 1-d or 2-d array (depending on the shape of x) that represents the result of applying this linear operator on x.

Return type

array

left_sparse_dot(matrix: scipy.sparse.csr.csr_matrix)[source]

Left dot product with a sparse matrix.

matmat(X)

Matrix-matrix multiplication.

Performs the operation y=A*X where A is an MxN linear operator and X dense N*K matrix or ndarray.

Parameters

X ({matrix, ndarray}) – An array with shape (N,K).

Returns

Y – A matrix or ndarray with shape (M,K) depending on the type of the X argument.

Return type

{matrix, ndarray}

Notes

This matmat wraps any user-specified matmat routine or overridden _matmat method to ensure that y has the correct type.

matvec(x)

Matrix-vector multiplication.

Performs the operation y=A*x where A is an MxN linear operator and x is a column vector or 1-d array.

Parameters

x ({matrix, ndarray}) – An array with shape (N,) or (N,1).

Returns

y – A matrix or ndarray with shape (M,) or (M,1) depending on the type and shape of the x argument.

Return type

{matrix, ndarray}

Notes

This matvec wraps the user-specified matvec routine or overridden _matvec method to ensure that y has the correct shape and type.

right_sparse_dot(matrix: scipy.sparse.csr.csr_matrix)[source]

Right dot product with a sparse matrix.

rmatmat(X)

Performs the operation y = A^H * x where A is an MxN linear operator and x is a column vector or 1-d array, or 2-d array. The default implementation defers to the adjoint.

Parameters

X ({matrix, ndarray}) – A matrix or 2D array.

Returns

Y – A matrix or 2D array depending on the type of the input.

Return type

{matrix, ndarray}

Notes

This rmatmat wraps the user-specified rmatmat routine.

rmatvec(x)

Performs the operation y = A^H * x where A is an MxN linear operator and x is a column vector or 1-d array.

Parameters

x ({matrix, ndarray}) – An array with shape (M,) or (M,1).

Returns

y – A matrix or ndarray with shape (N,) or (N,1) depending on the type and shape of the x argument.

Return type

{matrix, ndarray}

Notes

This rmatvec wraps the user-specified rmatvec routine or overridden _rmatvec method to ensure that y has the correct shape and type.

sum(axis=None)[source]

Row-wise, column-wise or total sum of operator’s coefficients.

Parameters

axis – If 0, return column-wise sum. If 1, return row-wise sum. Otherwise, return total sum.

transpose()

Transpose this linear operator.

Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of self.transpose().

## Operators

class sknetwork.linalg.Regularizer(*args, **kwargs)[source]

Regularized matrix as a Scipy LinearOperator.

Defined by $$A + \alpha \frac{11^T}n$$ where $$A$$ is the input matrix and $$\alpha$$ the regularization factor.

Parameters
• input_matrix – Input matrix.

• regularization (float) – Regularization factor. Default value = 1.

Examples

>>> from sknetwork.data import house
>>> regularizer.dot(np.ones(5))
array([3., 4., 3., 3., 4.])

property H

Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex matrix, the Hermitian adjoint is equal to the conjugate transpose.

Returns

A_H – Hermitian adjoint of self.

Return type

LinearOperator

property T

Transpose this linear operator.

Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of self.transpose().

Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex matrix, the Hermitian adjoint is equal to the conjugate transpose.

Returns

A_H – Hermitian adjoint of self.

Return type

LinearOperator

astype(dtype: Union[str, numpy.dtype])

Change dtype of the object.

dot(x)

Matrix-matrix or matrix-vector multiplication.

Parameters

x (array_like) – 1-d or 2-d array, representing a vector or matrix.

Returns

Ax – 1-d or 2-d array (depending on the shape of x) that represents the result of applying this linear operator on x.

Return type

array

left_sparse_dot(matrix: scipy.sparse.csr.csr_matrix)

Left dot product with a sparse matrix.

matmat(X)

Matrix-matrix multiplication.

Performs the operation y=A*X where A is an MxN linear operator and X dense N*K matrix or ndarray.

Parameters

X ({matrix, ndarray}) – An array with shape (N,K).

Returns

Y – A matrix or ndarray with shape (M,K) depending on the type of the X argument.

Return type

{matrix, ndarray}

Notes

This matmat wraps any user-specified matmat routine or overridden _matmat method to ensure that y has the correct type.

matvec(x)

Matrix-vector multiplication.

Performs the operation y=A*x where A is an MxN linear operator and x is a column vector or 1-d array.

Parameters

x ({matrix, ndarray}) – An array with shape (N,) or (N,1).

Returns

y – A matrix or ndarray with shape (M,) or (M,1) depending on the type and shape of the x argument.

Return type

{matrix, ndarray}

Notes

This matvec wraps the user-specified matvec routine or overridden _matvec method to ensure that y has the correct shape and type.

right_sparse_dot(matrix: scipy.sparse.csr.csr_matrix)

Right dot product with a sparse matrix.

rmatmat(X)

Performs the operation y = A^H * x where A is an MxN linear operator and x is a column vector or 1-d array, or 2-d array. The default implementation defers to the adjoint.

Parameters

X ({matrix, ndarray}) – A matrix or 2D array.

Returns

Y – A matrix or 2D array depending on the type of the input.

Return type

{matrix, ndarray}

Notes

This rmatmat wraps the user-specified rmatmat routine.

rmatvec(x)

Performs the operation y = A^H * x where A is an MxN linear operator and x is a column vector or 1-d array.

Parameters

x ({matrix, ndarray}) – An array with shape (M,) or (M,1).

Returns

y – A matrix or ndarray with shape (N,) or (N,1) depending on the type and shape of the x argument.

Return type

{matrix, ndarray}

Notes

This rmatvec wraps the user-specified rmatvec routine or overridden _rmatvec method to ensure that y has the correct shape and type.

sum(axis=None)

Row-wise, column-wise or total sum of operator’s coefficients.

Parameters

axis – If 0, return column-wise sum. If 1, return row-wise sum. Otherwise, return total sum.

transpose()

Transpose this linear operator.

Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of self.transpose().

class sknetwork.linalg.Normalizer(*args, **kwargs)[source]

Normalized matrix as a Scipy LinearOperator.

Defined by $$D^{-1}A$$ where $$A$$ is the regularized adjacency matrix and $$D$$ the corresponding diagonal matrix of degrees (sums over rows).

Parameters

• regularization (float) – Regularization factor. Default value = 0.

Examples

>>> from sknetwork.data import house
>>> normalizer.dot(np.ones(5))
array([1., 1., 1., 1., 1.])

property H

Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex matrix, the Hermitian adjoint is equal to the conjugate transpose.

Returns

A_H – Hermitian adjoint of self.

Return type

LinearOperator

property T

Transpose this linear operator.

Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of self.transpose().

Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex matrix, the Hermitian adjoint is equal to the conjugate transpose.

Returns

A_H – Hermitian adjoint of self.

Return type

LinearOperator

dot(x)

Matrix-matrix or matrix-vector multiplication.

Parameters

x (array_like) – 1-d or 2-d array, representing a vector or matrix.

Returns

Ax – 1-d or 2-d array (depending on the shape of x) that represents the result of applying this linear operator on x.

Return type

array

matmat(X)

Matrix-matrix multiplication.

Performs the operation y=A*X where A is an MxN linear operator and X dense N*K matrix or ndarray.

Parameters

X ({matrix, ndarray}) – An array with shape (N,K).

Returns

Y – A matrix or ndarray with shape (M,K) depending on the type of the X argument.

Return type

{matrix, ndarray}

Notes

This matmat wraps any user-specified matmat routine or overridden _matmat method to ensure that y has the correct type.

matvec(x)

Matrix-vector multiplication.

Performs the operation y=A*x where A is an MxN linear operator and x is a column vector or 1-d array.

Parameters

x ({matrix, ndarray}) – An array with shape (N,) or (N,1).

Returns

y – A matrix or ndarray with shape (M,) or (M,1) depending on the type and shape of the x argument.

Return type

{matrix, ndarray}

Notes

This matvec wraps the user-specified matvec routine or overridden _matvec method to ensure that y has the correct shape and type.

rmatmat(X)

Performs the operation y = A^H * x where A is an MxN linear operator and x is a column vector or 1-d array, or 2-d array. The default implementation defers to the adjoint.

Parameters

X ({matrix, ndarray}) – A matrix or 2D array.

Returns

Y – A matrix or 2D array depending on the type of the input.

Return type

{matrix, ndarray}

Notes

This rmatmat wraps the user-specified rmatmat routine.

rmatvec(x)

Performs the operation y = A^H * x where A is an MxN linear operator and x is a column vector or 1-d array.

Parameters

x ({matrix, ndarray}) – An array with shape (M,) or (M,1).

Returns

y – A matrix or ndarray with shape (N,) or (N,1) depending on the type and shape of the x argument.

Return type

{matrix, ndarray}

Notes

This rmatvec wraps the user-specified rmatvec routine or overridden _rmatvec method to ensure that y has the correct shape and type.

transpose()

Transpose this linear operator.

Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of self.transpose().

class sknetwork.linalg.Laplacian(*args, **kwargs)[source]

Laplacian matrix as a Scipy LinearOperator.

Defined by $$L = D - A$$ where $$A$$ is the regularized adjacency matrix and $$D$$ the corresponding diagonal matrix of degrees.

If normalized, defined by $$L = I - D^{-1/2}AD^{-1/2}$$.

Parameters

• regularization (float) – Regularization factor. Default value = 0.

• normalized_laplacian (bool) – If True, use normalized Laplacian. Default value = False.

Examples

>>> from sknetwork.data import house
>>> laplacian.dot(np.ones(5))
array([0., 0., 0., 0., 0.])

property H

Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex matrix, the Hermitian adjoint is equal to the conjugate transpose.

Returns

A_H – Hermitian adjoint of self.

Return type

LinearOperator

property T

Transpose this linear operator.

Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of self.transpose().

Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex matrix, the Hermitian adjoint is equal to the conjugate transpose.

Returns

A_H – Hermitian adjoint of self.

Return type

LinearOperator

astype(dtype: Union[str, numpy.dtype])[source]

Change dtype of the object.

dot(x)

Matrix-matrix or matrix-vector multiplication.

Parameters

x (array_like) – 1-d or 2-d array, representing a vector or matrix.

Returns

Ax – 1-d or 2-d array (depending on the shape of x) that represents the result of applying this linear operator on x.

Return type

array

matmat(X)

Matrix-matrix multiplication.

Performs the operation y=A*X where A is an MxN linear operator and X dense N*K matrix or ndarray.

Parameters

X ({matrix, ndarray}) – An array with shape (N,K).

Returns

Y – A matrix or ndarray with shape (M,K) depending on the type of the X argument.

Return type

{matrix, ndarray}

Notes

This matmat wraps any user-specified matmat routine or overridden _matmat method to ensure that y has the correct type.

matvec(x)

Matrix-vector multiplication.

Performs the operation y=A*x where A is an MxN linear operator and x is a column vector or 1-d array.

Parameters

x ({matrix, ndarray}) – An array with shape (N,) or (N,1).

Returns

y – A matrix or ndarray with shape (M,) or (M,1) depending on the type and shape of the x argument.

Return type

{matrix, ndarray}

Notes

This matvec wraps the user-specified matvec routine or overridden _matvec method to ensure that y has the correct shape and type.

rmatmat(X)

Performs the operation y = A^H * x where A is an MxN linear operator and x is a column vector or 1-d array, or 2-d array. The default implementation defers to the adjoint.

Parameters

X ({matrix, ndarray}) – A matrix or 2D array.

Returns

Y – A matrix or 2D array depending on the type of the input.

Return type

{matrix, ndarray}

Notes

This rmatmat wraps the user-specified rmatmat routine.

rmatvec(x)

Performs the operation y = A^H * x where A is an MxN linear operator and x is a column vector or 1-d array.

Parameters

x ({matrix, ndarray}) – An array with shape (M,) or (M,1).

Returns

y – A matrix or ndarray with shape (N,) or (N,1) depending on the type and shape of the x argument.

Return type

{matrix, ndarray}

Notes

This rmatvec wraps the user-specified rmatvec routine or overridden _rmatvec method to ensure that y has the correct shape and type.

transpose()

Transpose this linear operator.

Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of self.transpose().

class sknetwork.linalg.CoNeighbor(*args, **kwargs)[source]

$$\tilde{A} = AF^{-1}A^T$$, or $$\tilde{B} = BF^{-1}B^T$$.

where F is a weight matrix.

Parameters

• normalized – If True, F is the diagonal in-degree matrix $$F = \text{diag}(A^T1)$$. Otherwise, F is the identity matrix.

Examples

>>> from sknetwork.data import star_wars
>>> np.allclose(d_out, coneigh.dot(np.ones(4)))
True

property H

Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex matrix, the Hermitian adjoint is equal to the conjugate transpose.

Returns

A_H – Hermitian adjoint of self.

Return type

LinearOperator

property T

Transpose this linear operator.

Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of self.transpose().

Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex matrix, the Hermitian adjoint is equal to the conjugate transpose.

Returns

A_H – Hermitian adjoint of self.

Return type

LinearOperator

astype(dtype: Union[str, numpy.dtype])[source]

Change dtype of the object.

dot(x)

Matrix-matrix or matrix-vector multiplication.

Parameters

x (array_like) – 1-d or 2-d array, representing a vector or matrix.

Returns

Ax – 1-d or 2-d array (depending on the shape of x) that represents the result of applying this linear operator on x.

Return type

array

left_sparse_dot(matrix: scipy.sparse.csr.csr_matrix)[source]

Left dot product with a sparse matrix

matmat(X)

Matrix-matrix multiplication.

Performs the operation y=A*X where A is an MxN linear operator and X dense N*K matrix or ndarray.

Parameters

X ({matrix, ndarray}) – An array with shape (N,K).

Returns

Y – A matrix or ndarray with shape (M,K) depending on the type of the X argument.

Return type

{matrix, ndarray}

Notes

This matmat wraps any user-specified matmat routine or overridden _matmat method to ensure that y has the correct type.

matvec(x)

Matrix-vector multiplication.

Performs the operation y=A*x where A is an MxN linear operator and x is a column vector or 1-d array.

Parameters

x ({matrix, ndarray}) – An array with shape (N,) or (N,1).

Returns

y – A matrix or ndarray with shape (M,) or (M,1) depending on the type and shape of the x argument.

Return type

{matrix, ndarray}

Notes

This matvec wraps the user-specified matvec routine or overridden _matvec method to ensure that y has the correct shape and type.

right_sparse_dot(matrix: scipy.sparse.csr.csr_matrix)[source]

Right dot product with a sparse matrix

rmatmat(X)

Performs the operation y = A^H * x where A is an MxN linear operator and x is a column vector or 1-d array, or 2-d array. The default implementation defers to the adjoint.

Parameters

X ({matrix, ndarray}) – A matrix or 2D array.

Returns

Y – A matrix or 2D array depending on the type of the input.

Return type

{matrix, ndarray}

Notes

This rmatmat wraps the user-specified rmatmat routine.

rmatvec(x)

Performs the operation y = A^H * x where A is an MxN linear operator and x is a column vector or 1-d array.

Parameters

x ({matrix, ndarray}) – An array with shape (M,) or (M,1).

Returns

y – A matrix or ndarray with shape (N,) or (N,1) depending on the type and shape of the x argument.

Return type

{matrix, ndarray}

Notes

This rmatvec wraps the user-specified rmatvec routine or overridden _rmatvec method to ensure that y has the correct shape and type.

transpose()

Transpose this linear operator.

Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of self.transpose().

## Solvers

class sknetwork.linalg.LanczosEig(which='LM', n_iter: Optional[int] = None, tol: float = 0.0)[source]

Eigenvalue solver using Lanczos method.

Parameters
• which (str) –

Which eigenvectors and eigenvalues to find:

• 'LM' : Largest (in modulus) eigenvalues.

• 'SM' : Smallest (in modulus) eigenvalues.

• 'LA' : Largest (algebraic) eigenvalues.

• 'SA' : Smallest (algebraic) eigenvalues.

• n_iter (int) – Maximum number of Arnoldi update iterations allowed. Default = 10 * nb of rows.

• tol (float) – Relative accuracy for eigenvalues (stopping criterion). Default = 0 (machine precision).

Variables
• eigenvectors_ (np.ndarray) – Two-dimensional array, each column is an eigenvector of the input.

• eigenvalues_ (np.ndarray) – Eigenvalues associated to each eigenvector.

scipy.sparse.linalg.eigsh

fit(matrix: Union[scipy.sparse.csr.csr_matrix, scipy.sparse.linalg.interface.LinearOperator], n_components: int = 2)[source]

Perform spectral decomposition on symmetric input matrix.

Parameters
• matrix (sparse.csr_matrix or linear operator) – Matrix to decompose.

• n_components (int) – Number of eigenvectors to compute

Returns

self

Return type

EigSolver

class sknetwork.linalg.LanczosSVD(n_iter: Optional[int] = None, tol: float = 0.0)[source]

SVD solver using Lanczos method on $$AA^T$$ or $$A^TA$$.

Parameters
• n_iter (int) – Maximum number of Arnoldi update iterations allowed. Default = 10 * nb or rows or columns.

• tol (float) – Relative accuracy for eigenvalues (stopping criterion). Default = 0 (machine precision).

Variables
• singular_vectors_left_ (np.ndarray) – Two-dimensional array, each column is a left singular vector of the input.

• singular_vectors_right_ (np.ndarray) – Two-dimensional array, each column is a right singular vector of the input.

• singular_values_ (np.ndarray) – Singular values.

scipy.sparse.linalg.svds

fit(matrix: Union[scipy.sparse.csr.csr_matrix, scipy.sparse.linalg.interface.LinearOperator], n_components: int, init_vector: Optional[numpy.ndarray] = None)[source]

Perform singular value decomposition on input matrix.

Parameters
• matrix – Matrix to decompose.

• n_components (int) – Number of singular values to compute

• init_vector (np.ndarray) – Starting vector for iteration. Default = random.

Returns

self

Return type

SVDSolver

sknetwork.linalg.ppr_solver.get_pagerank(adjacency: Union[scipy.sparse.csr.csr_matrix, scipy.sparse.linalg.interface.LinearOperator], seeds: numpy.ndarray, damping_factor: float, n_iter: int, tol: float = 1e-06, solver: str = 'piteration') numpy.ndarray[source]

Solve the Pagerank problem. Formally,

$$x = \alpha Px + (1-\alpha)y$$,

where $$P = (D^{-1}A)^T$$ is the transition matrix and $$y$$ is the personalization probability vector.

Parameters

• seeds (np.ndarray) – Personalization array. Must be a valid probability vector.

• damping_factor (float) – Probability to continue the random walk.

• n_iter (int) – Number of iterations for some of the solvers such as 'piteration' or 'diteration'.

• tol (float) – Tolerance for the convergence of some solvers such as 'bicgstab' or 'lanczos' or 'push'.

• solver (str) – Which solver to use: 'piteration', 'diteration', 'bicgstab', 'lanczos', ̀'RH', 'push'.

Returns

pagerank – Probability vector.

Return type

np.ndarray

Examples

>>> from sknetwork.data import house
>>> seeds = np.array([1, 0, 0, 0, 0])
>>> scores = get_pagerank(adjacency, seeds, damping_factor=0.85, n_iter=10)
>>> np.round(scores, 2)
array([0.29, 0.24, 0.12, 0.12, 0.24])


References

## Miscellaneous

sknetwork.linalg.diag_pinv(weights: numpy.ndarray) scipy.sparse.csr.csr_matrix[source]

Compute $$W^+ = \text{diag}(w)^+$$, the pseudo inverse of the diagonal matrix with diagonal the weights $$w$$.

Parameters

weights – The weights to invert.

Returns

$$W^+$$

Return type

sparse.csr_matrix

sknetwork.linalg.normalize(matrix: Union[scipy.sparse.csr.csr_matrix, numpy.ndarray, scipy.sparse.linalg.interface.LinearOperator], p=1)[source]

Normalize rows of a matrix. Null rows remain null.

Parameters
• matrix – Input matrix.

• p – Order of the norm

Returns

normalized matrix

Return type

same as input