Source code for sknetwork.linalg.sparse_lowrank

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Apr 19 2019
@author: Nathan de Lara <nathan.delara@polytechnique.org>
"""
from typing import Union, Tuple

import numpy as np
from scipy import sparse
from scipy.sparse.linalg import LinearOperator


[docs] class SparseLR(LinearOperator): """Class for matrices with "sparse + low rank" structure. Example: :math:`A + xy^T` Parameters ---------- sparse_mat: scipy.spmatrix Sparse component. Is converted to csr format automatically. low_rank_tuples: list Single tuple of arrays of list of tuples, representing the low rank components [(x1, y1), (x2, y2),...]. Each low rank component is of the form :math:`xy^T`. Examples -------- >>> from scipy import sparse >>> from sknetwork.linalg import SparseLR >>> adjacency = sparse.eye(2, format='csr') >>> slr = SparseLR(adjacency, (np.ones(2), np.ones(2))) >>> x = np.ones(2) >>> slr.dot(x) array([3., 3.]) >>> slr.sum(axis=0) array([3., 3.]) >>> slr.sum(axis=1) array([3., 3.]) >>> float(slr.sum()) 6.0 References ---------- De Lara (2019). `The Sparse + Low Rank trick for Matrix Factorization-Based Graph Algorithms. <http://www.mlgworkshop.org/2019/papers/MLG2019_paper_1.pdf>`_ Proceedings of the 15th International Workshop on Mining and Learning with Graphs (MLG). """ def __init__(self, sparse_mat: Union[sparse.csr_matrix, sparse.csc_matrix], low_rank_tuples: Union[list, Tuple], dtype=float): n_row, n_col = sparse_mat.shape self.sparse_mat = sparse_mat.tocsr().astype(dtype) super(SparseLR, self).__init__(dtype=dtype, shape=(n_row, n_col)) if isinstance(low_rank_tuples, Tuple): low_rank_tuples = [low_rank_tuples] self.low_rank_tuples = [] for x, y in low_rank_tuples: if x.shape == (n_row,) and y.shape == (n_col,): self.low_rank_tuples.append((x.astype(self.dtype), y.astype(self.dtype))) else: raise ValueError('For each low rank tuple, x (resp. y) should be a vector of length {} (resp. {})' .format(n_row, n_col)) def __neg__(self): return SparseLR(-self.sparse_mat, [(-x, y) for (x, y) in self.low_rank_tuples]) def __add__(self, other: 'SparseLR'): if type(other) == sparse.csr_matrix: return SparseLR(self.sparse_mat + other, self.low_rank_tuples) else: return SparseLR(self.sparse_mat + other.sparse_mat, self.low_rank_tuples + other.low_rank_tuples) def __sub__(self, other): return self.__add__(-other) def __mul__(self, other): return SparseLR(other * self.sparse_mat, [(other * x, y) for (x, y) in self.low_rank_tuples]) def _matvec(self, matrix: np.ndarray): """Right dot product with a dense matrix. Parameters ---------- matrix: Matrix. Returns ------- Dot product as a dense array """ prod = self.sparse_mat.dot(matrix) if len(matrix.shape) == 1: for (x, y) in self.low_rank_tuples: prod += x * matrix.dot(y) else: transposed = matrix.T for (x, y) in self.low_rank_tuples: prod += x[:, np.newaxis].dot(transposed.dot(y)[:, np.newaxis].T) return prod def _transpose(self): """Transposed operator.""" transposed_sparse = sparse.csr_matrix(self.sparse_mat.T) transposed_tuples = [(y, x) for (x, y) in self.low_rank_tuples] return SparseLR(transposed_sparse, transposed_tuples) def _adjoint(self): return self.transpose()
[docs] def left_sparse_dot(self, matrix: sparse.csr_matrix): """Left dot product with a sparse matrix.""" return SparseLR(matrix.dot(self.sparse_mat), [(matrix.dot(x), y) for (x, y) in self.low_rank_tuples])
[docs] def right_sparse_dot(self, matrix: sparse.csr_matrix): """Right dot product with a sparse matrix.""" return SparseLR(self.sparse_mat.dot(matrix), [(x, matrix.T.dot(y)) for (x, y) in self.low_rank_tuples])
[docs] def sum(self, axis=None): """Row-wise, column-wise or total sum of operator's coefficients. Parameters ---------- axis : If 0, return column-wise sum. If 1, return row-wise sum. Otherwise, return total sum. """ if axis == 0: s = self.T.dot(np.ones(self.shape[0])) elif axis == 1: s = self.dot(np.ones(self.shape[1])) else: s = self.dot(np.ones(self.shape[1])).sum() return s
[docs] def astype(self, dtype: Union[str, np.dtype]): """Change dtype of the object.""" self.sparse_mat = self.sparse_mat.astype(dtype) self.low_rank_tuples = [(x.astype(dtype), y.astype(dtype)) for (x, y) in self.low_rank_tuples] self.dtype = np.dtype(dtype) return self