# Embedding

Graph embedding algorithms.

The attribute embedding_ assigns a vector to each node of the graph.

## Spectral

class sknetwork.embedding.Spectral(n_components: int = 2, decomposition: str = 'rw', regularization: float = - 1, normalized: bool = True)[source]

Spectral embedding of graphs, based the spectral decomposition of the Laplacian matrix $$L = D - A$$ or the transition matrix of the random walk $$P = D^{-1}A$$ (default), where $$D$$ is the diagonal matrix of degrees.

Eigenvectors are considered in increasing order (for the Laplacian matrix $$L$$) or decreasing order (for the transition matrix of the random walk $$P$$) of eigenvalues, skipping the first.

Parameters
• n_components (int (default = 2)) – Dimension of the embedding space.

• decomposition (str (laplacian or rw, default = rw)) – Matrix used for the spectral decomposition.

• regularization (float (default = -1)) – Regularization factor $$\alpha$$ so that the adjacency matrix is $$A + \alpha \frac{11^T}{n}$$. If negative, regularization is applied only if the graph is disconnected; the regularization factor $$\alpha$$ is then set to the absolute value of the parameter.

• normalized (bool (default = True)) – If True, normalized the embedding so that each vector has norm 1 in the embedding space, i.e., each vector lies on the unit sphere.

Variables
• embedding_ (array, shape = (n, n_components)) – Embedding of the nodes.

• embedding_row_ (array, shape = (n_row, n_components)) – Embedding of the rows, for bipartite graphs.

• embedding_col_ (array, shape = (n_col, n_components)) – Embedding of the columns, for bipartite graphs.

• eigenvalues_ (array, shape = (n_components)) – Eigenvalues.

• eigenvectors_ (array, shape = (n, n_components)) – Eigenvectors.

Example

>>> from sknetwork.embedding import Spectral
>>> from sknetwork.data import karate_club
>>> spectral = Spectral(n_components=3)
>>> embedding.shape
(34, 3)


References

Belkin, M. & Niyogi, P. (2003). Laplacian Eigenmaps for Dimensionality Reduction and Data Representation, Neural computation.

fit(input_matrix: Union[scipy.sparse._csr.csr_matrix, numpy.ndarray], force_bipartite: bool = False) [source]

Compute the graph embedding.

If the input matrix $$B$$ is not square (e.g., biadjacency matrix of a bipartite graph) or not symmetric (e.g., adjacency matrix of a directed graph), use the adjacency matrix

$$A = \begin{bmatrix} 0 & B \\ B^T & 0 \end{bmatrix}$$

and return the embedding for both rows and columns of the input matrix $$B$$.

Parameters

• force_bipartite (bool (default = False)) – If True, force the input matrix to be considered as a biadjacency matrix.

Returns

self

Return type

Spectral

fit_transform(*args, **kwargs) numpy.ndarray

Fit to data and return the embedding. Same parameters as the fit method.

Returns

embedding – Embedding.

Return type

np.ndarray

get_params()

Get parameters as dictionary.

Returns

params – Parameters of the algorithm.

Return type

dict

Predict the embedding of new nodes, when possible (otherwise return 0).

Each new node is defined by its adjacency row vector.

Parameters

adjacency_vectors – Adjacency vectors of nodes. Array of shape (n_col,) (single vector) or (n_vectors, n_col)

Returns

embedding_vectors – Embedding of the nodes.

Return type

np.ndarray

Example

>>> from sknetwork.embedding import Spectral
>>> from sknetwork.data import karate_club
>>> spectral = Spectral(n_components=3)
>>> adjacency_vector = np.arange(34) < 5
3

set_params(params: dict) sknetwork.base.Algorithm

Set parameters of the algorithm.

Parameters

params (dict) – Parameters of the algorithm.

Returns

self

Return type

Algorithm

## SVD

class sknetwork.embedding.SVD(n_components=2, regularization: Union[None, float] = None, factor_singular: float = 0.0, normalized: bool = False, solver: Union[str, sknetwork.linalg.svd_solver.SVDSolver] = 'lanczos')[source]

Graph embedding by Singular Value Decomposition of the adjacency or biadjacency matrix of the graph.

Parameters
• n_components (int) – Dimension of the embedding.

• regularization (None or float (default = None)) – Regularization factor $$\alpha$$ so that the matrix is $$A + \alpha \frac{11^T}{n}$$.

• factor_singular (float (default = 0.)) –

Power factor $$\alpha$$ applied to the singular values on right singular vectors. The embedding of rows and columns are respectively $$U \Sigma^{1-\alpha}$$ and $$V \Sigma^\alpha$$ where:

• $$U$$ is the matrix of left singular vectors, shape (n_row, n_components)

• $$V$$ is the matrix of right singular vectors, shape (n_col, n_components)

• $$\Sigma$$ is the diagonal matrix of singular values, shape (n_components, n_components)

• normalized (bool (default = False)) – If True, normalized the embedding so that each vector has norm 1 in the embedding space, i.e., each vector lies on the unit sphere.

• solver ('lanczos' (Lanczos algorithm, default) or SVDSolver (custom solver)) – Which solver to use.

Variables
• embedding_ (array, shape = (n, n_components)) – Embedding of the nodes.

• embedding_row_ (array, shape = (n_row, n_components)) – Embedding of the rows, for bipartite graphs.

• embedding_col_ (array, shape = (n_col, n_components)) – Embedding of the columns, for bipartite graphs.

• singular_values_ (np.ndarray, shape = (n_components)) – Singular values.

• singular_vectors_left_ (np.ndarray, shape = (n_row, n_components)) – Left singular vectors.

• singular_vectors_right_ (np.ndarray, shape = (n_col, n_components)) – Right singular vectors.

Example

>>> from sknetwork.embedding import SVD
>>> from sknetwork.data import karate_club
>>> svd = SVD()
>>> embedding.shape
(34, 2)


References

Abdi, H. (2007). Singular value decomposition (SVD) and generalized singular value decomposition. Encyclopedia of measurement and statistics.

fit(input_matrix: Union[scipy.sparse._csr.csr_matrix, numpy.ndarray])

Compute the embedding of the graph.

Parameters

Returns

self

Return type

GSVD

fit_transform(*args, **kwargs) numpy.ndarray

Fit to data and return the embedding. Same parameters as the fit method.

Returns

embedding – Embedding.

Return type

np.ndarray

get_params()

Get parameters as dictionary.

Returns

params – Parameters of the algorithm.

Return type

dict

Predict the embedding of new rows, defined by their adjacency vectors.

Parameters

adjacency_vectors – Adjacency vectors of nodes. Array of shape (n_col,) (single vector) or (n_vectors, n_col)

Returns

embedding_vectors – Embedding of the nodes.

Return type

np.ndarray

set_params(params: dict) sknetwork.base.Algorithm

Set parameters of the algorithm.

Parameters

params (dict) – Parameters of the algorithm.

Returns

self

Return type

Algorithm

## GSVD

class sknetwork.embedding.GSVD(n_components=2, regularization: Union[None, float] = None, factor_row: float = 0.5, factor_col: float = 0.5, factor_singular: float = 0.0, normalized: bool = True, solver: Union[str, sknetwork.linalg.svd_solver.SVDSolver] = 'lanczos')[source]

Graph embedding by Generalized Singular Value Decomposition of the adjacency or biadjacency matrix $$A$$. This is equivalent to the Singular Value Decomposition of the matrix $$D_1^{- \alpha_1}AD_2^{- \alpha_2}$$ where $$D_1, D_2$$ are the diagonal matrices of row weights and columns weights, respectively, and $$\alpha_1, \alpha_2$$ are parameters.

Parameters
• n_components (int) – Dimension of the embedding.

• regularization (None or float (default = None)) – Regularization factor $$\alpha$$ so that the matrix is $$A + \alpha \frac{11^T}{n}$$.

• factor_row (float (default = 0.5)) – Power factor $$\alpha_1$$ applied to the diagonal matrix of row weights.

• factor_col (float (default = 0.5)) – Power factor $$\alpha_2$$ applied to the diagonal matrix of column weights.

• factor_singular (float (default = 0.)) –

Parameter $$\alpha$$ applied to the singular values on right singular vectors. The embedding of rows and columns are respectively $$D_1^{- \alpha_1}U \Sigma^{1-\alpha}$$ and $$D_2^{- \alpha_2}V \Sigma^\alpha$$ where:

• $$U$$ is the matrix of left singular vectors, shape (n_row, n_components)

• $$V$$ is the matrix of right singular vectors, shape (n_col, n_components)

• $$\Sigma$$ is the diagonal matrix of singular values, shape (n_components, n_components)

• normalized (bool (default = True)) – If True, normalized the embedding so that each vector has norm 1 in the embedding space, i.e., each vector lies on the unit sphere.

• solver ('lanczos' (Lanczos algorithm, default) or SVDSolver (custom solver)) – Which solver to use.

Variables
• embedding_ (array, shape = (n, n_components)) – Embedding of the nodes.

• embedding_row_ (array, shape = (n_row, n_components)) – Embedding of the rows, for bipartite graphs.

• embedding_col_ (array, shape = (n_col, n_components)) – Embedding of the columns, for bipartite graphs.

• singular_values_ (np.ndarray, shape = (n_components)) – Singular values.

• singular_vectors_left_ (np.ndarray, shape = (n_row, n_components)) – Left singular vectors.

• singular_vectors_right_ (np.ndarray, shape = (n_col, n_components)) – Right singular vectors.

• weights_col_ (np.ndarray, shape = (n2)) – Weights applied to columns.

Example

>>> from sknetwork.embedding import GSVD
>>> from sknetwork.data import karate_club
>>> gsvd = GSVD()
>>> embedding.shape
(34, 2)


References

Abdi, H. (2007). Singular value decomposition (SVD) and generalized singular value decomposition. Encyclopedia of measurement and statistics, 907-912.

fit(input_matrix: Union[scipy.sparse._csr.csr_matrix, numpy.ndarray]) [source]

Compute the embedding of the graph.

Parameters

Returns

self

Return type

GSVD

fit_transform(*args, **kwargs) numpy.ndarray

Fit to data and return the embedding. Same parameters as the fit method.

Returns

embedding – Embedding.

Return type

np.ndarray

get_params()

Get parameters as dictionary.

Returns

params – Parameters of the algorithm.

Return type

dict

Predict the embedding of new rows, defined by their adjacency vectors.

Parameters

adjacency_vectors – Adjacency vectors of nodes. Array of shape (n_col,) (single vector) or (n_vectors, n_col)

Returns

embedding_vectors – Embedding of the nodes.

Return type

np.ndarray

set_params(params: dict) sknetwork.base.Algorithm

Set parameters of the algorithm.

Parameters

params (dict) – Parameters of the algorithm.

Returns

self

Return type

Algorithm

## PCA

class sknetwork.embedding.PCA(n_components=2, normalized: bool = False, solver: Union[str, sknetwork.linalg.svd_solver.SVDSolver] = 'lanczos')[source]

Graph embedding by Principal Component Analysis of the adjacency or biadjacency matrix.

Parameters
• n_components (int) – Dimension of the embedding.

• normalized (bool (default = False)) – If True, normalized the embedding so that each vector has norm 1 in the embedding space, i.e., each vector lies on the unit sphere.

• solver ('lanczos' (Lanczos algorithm, default) or SVDSolver (custom solver)) – Which solver to use.

Variables
• embedding_ (array, shape = (n, n_components)) – Embedding of the nodes.

• embedding_row_ (array, shape = (n_row, n_components)) – Embedding of the rows, for bipartite graphs.

• embedding_col_ (array, shape = (n_col, n_components)) – Embedding of the columns, for bipartite graphs.

• singular_values_ (np.ndarray, shape = (n_components)) – Singular values.

• singular_vectors_left_ (np.ndarray, shape = (n_row, n_components)) – Left singular vectors.

• singular_vectors_right_ (np.ndarray, shape = (n_col, n_components)) – Right singular vectors.

Example

>>> from sknetwork.embedding import PCA
>>> from sknetwork.data import karate_club
>>> pca = PCA()
>>> embedding.shape
(34, 2)


References

Jolliffe, I.T. (2002). Principal Component Analysis Series: Springer Series in Statistics.

Compute the embedding of the graph.

Parameters

Returns

self

Return type

PCA

fit_transform(*args, **kwargs) numpy.ndarray

Fit to data and return the embedding. Same parameters as the fit method.

Returns

embedding – Embedding.

Return type

np.ndarray

get_params()

Get parameters as dictionary.

Returns

params – Parameters of the algorithm.

Return type

dict

Predict the embedding of new rows, defined by their adjacency vectors.

Parameters

adjacency_vectors – Adjacency vectors of nodes. Array of shape (n_col,) (single vector) or (n_vectors, n_col)

Returns

embedding_vectors – Embedding of the nodes.

Return type

np.ndarray

set_params(params: dict) sknetwork.base.Algorithm

Set parameters of the algorithm.

Parameters

params (dict) – Parameters of the algorithm.

Returns

self

Return type

Algorithm

## Random Projection

class sknetwork.embedding.RandomProjection(n_components: int = 2, alpha: float = 0.5, n_iter: int = 3, random_walk: bool = False, regularization: float = - 1, normalized: bool = True, random_state: Optional[int] = None)[source]

Embedding of graphs based the random projection of the adjacency matrix:

$$(I + \alpha A +... + (\alpha A)^K)G$$

where $$A$$ is the adjacency matrix, $$G$$ is a random Gaussian matrix, $$\alpha$$ is some smoothing factor and $$K$$ some non-negative integer.

Parameters
• n_components (int (default = 2)) – Dimension of the embedding space.

• alpha (float (default = 0.5)) – Smoothing parameter.

• n_iter (int (default = 3)) – Number of power iterations of the adjacency matrix.

• random_walk (bool (default = False)) – If True, use the transition matrix of the random walk, $$P = D^{-1}A$$, instead of the adjacency matrix.

• regularization (float (default = -1)) – Regularization factor $$\alpha$$ so that the matrix is $$A + \alpha \frac{11^T}{n}$$. If negative, regularization is applied only if the graph is disconnected (and then equal to the absolute value of the parameter).

• normalized (bool (default = True)) – If True, normalize the embedding so that each vector has norm 1 in the embedding space, i.e., each vector lies on the unit sphere.

• random_state (int, optional) – Seed used by the random number generator.

Variables
• embedding_ (array, shape = (n, n_components)) – Embedding of the nodes.

• embedding_row_ (array, shape = (n_row, n_components)) – Embedding of the rows, for bipartite graphs.

• embedding_col_ (array, shape = (n_col, n_components)) – Embedding of the columns, for bipartite graphs.

Example

>>> from sknetwork.embedding import RandomProjection
>>> from sknetwork.data import karate_club
>>> projection = RandomProjection()
>>> embedding.shape
(34, 2)


References

Zhang, Z., Cui, P., Li, H., Wang, X., & Zhu, W. (2018). Billion-scale network embedding with iterative random projection, ICDM.

fit(input_matrix: Union[scipy.sparse._csr.csr_matrix, numpy.ndarray], force_bipartite: bool = False) [source]

Compute the graph embedding.

Parameters

• force_bipartite (bool (default = False)) – If True, force the input matrix to be considered as a biadjacency matrix.

Returns

self

Return type

RandomProjection

fit_transform(*args, **kwargs) numpy.ndarray

Fit to data and return the embedding. Same parameters as the fit method.

Returns

embedding – Embedding.

Return type

np.ndarray

get_params()

Get parameters as dictionary.

Returns

params – Parameters of the algorithm.

Return type

dict

Predict the embedding of new nodes.

Each new node is defined by its adjacency row vector.

Parameters

adjacency_vectors – Adjacency vectors of nodes. Array of shape (n_col,) (single vector) or (n_vectors, n_col)

Returns

embedding_vectors – Embedding of the nodes.

Return type

np.ndarray

set_params(params: dict) sknetwork.base.Algorithm

Set parameters of the algorithm.

Parameters

params (dict) – Parameters of the algorithm.

Returns

self

Return type

Algorithm

## Louvain

class sknetwork.embedding.LouvainEmbedding(resolution: float = 1, modularity: str = 'Dugue', tol_optimization: float = 0.001, tol_aggregation: float = 0.001, n_aggregations: int = - 1, shuffle_nodes: bool = False, random_state: Optional[Union[numpy.random.mtrand.RandomState, int]] = None, isolated_nodes: str = 'remove')[source]

Embedding of graphs induced by Louvain clustering. Each component of the embedding corresponds to a cluster obtained by Louvain.

Parameters
• resolution (float) – Resolution parameter.

• modularity (str) – Which objective function to maximize. Can be 'Dugue', 'Newman' or 'Potts'.

• tol_optimization – Minimum increase in the objective function to enter a new optimization pass.

• tol_aggregation – Minimum increase in the objective function to enter a new aggregation pass.

• n_aggregations – Maximum number of aggregations. A negative value is interpreted as no limit.

• shuffle_nodes – Enables node shuffling before optimization.

• random_state – Random number generator or random seed. If None, numpy.random is used.

• isolated_nodes (str) – What to do with isolated column nodes. Can be 'remove' (default), 'merge' or 'keep'.

Variables
• embedding_ (array, shape = (n, n_components)) – Embedding of the nodes.

• embedding_row_ (array, shape = (n_row, n_components)) – Embedding of the rows, for bipartite graphs.

• embedding_col_ (array, shape = (n_col, n_components)) – Embedding of the columns, for bipartite graphs.

• labels_row_ (np.ndarray) – Labels of the rows (used to build the embedding of the columns).

• labels_col_ (np.ndarray) – Labels of the columns (used to build the embedding of the rows).

Example

>>> from sknetwork.embedding import LouvainEmbedding
>>> from sknetwork.data import house
>>> louvain = LouvainEmbedding()
>>> embedding.shape
(5, 2)

fit(input_matrix: scipy.sparse._csr.csr_matrix, force_bipartite: bool = False)[source]

Embedding of graphs from the clustering obtained with Louvain.

Parameters

• force_bipartite (bool (default = False)) – If True, force the input matrix to be considered as a biadjacency matrix.

Returns

self

Return type

BiLouvainEmbedding

fit_transform(*args, **kwargs) numpy.ndarray

Fit to data and return the embedding. Same parameters as the fit method.

Returns

embedding – Embedding.

Return type

np.ndarray

get_params()

Get parameters as dictionary.

Returns

params – Parameters of the algorithm.

Return type

dict

Predict the embedding of new rows, defined by their adjacency vectors.

Parameters

adjacency_vectors – Adjacency row vectors. Array of shape (n_col,) (single vector) or (n_vectors, n_col)

Returns

embedding_vectors – Embedding of the nodes.

Return type

np.ndarray

set_params(params: dict) sknetwork.base.Algorithm

Set parameters of the algorithm.

Parameters

params (dict) – Parameters of the algorithm.

Returns

self

Return type

Algorithm

## Hierarchical Louvain

class sknetwork.embedding.LouvainNE(n_components: int = 2, scale: float = 0.1, resolution: float = 1, tol_optimization: float = 0.001, tol_aggregation: float = 0.001, n_aggregations: int = - 1, shuffle_nodes: bool = False, random_state: Optional[Union[numpy.random.mtrand.RandomState, int]] = None, verbose: bool = False)[source]

Embedding of graphs based on the hierarchical Louvain algorithm with random scattering per level.

Parameters
• n_components (int) – Dimension of the embedding.

• scale (float) – Dilution factor to be applied on the random vector to be added at each iteration of the clustering method.

• resolution – Resolution parameter.

• tol_optimization – Minimum increase in the objective function to enter a new optimization pass.

• tol_aggregation – Minimum increase in the objective function to enter a new aggregation pass.

• n_aggregations – Maximum number of aggregations. A negative value is interpreted as no limit.

• shuffle_nodes – Enables node shuffling before optimization.

• random_state – Random number generator or random seed. If None, numpy.random is used.

Variables
• embedding_ (array, shape = (n, n_components)) – Embedding of the nodes.

• embedding_row_ (array, shape = (n_row, n_components)) – Embedding of the rows, for bipartite graphs.

• embedding_col_ (array, shape = (n_col, n_components)) – Embedding of the columns, for bipartite graphs.

Example

>>> from sknetwork.embedding import LouvainNE
>>> from sknetwork.data import karate_club
>>> louvain = LouvainNE(n_components=3)
>>> embedding.shape
(34, 3)


References

Bhowmick, A. K., Meneni, K., Danisch, M., Guillaume, J. L., & Mitra, B. (2020, January). LouvainNE: Hierarchical Louvain Method for High Quality and Scalable Network Embedding. In Proceedings of the 13th International Conference on Web Search and Data Mining (pp. 43-51).

fit(input_matrix: Union[scipy.sparse._csr.csr_matrix, numpy.ndarray], force_bipartite: bool = False)[source]

Embedding of graphs from a clustering obtained with Louvain.

Parameters

• force_bipartite – If True, force the input matrix to be considered as a biadjacency matrix even if square.

Returns

self

Return type

LouvainNE

fit_transform(*args, **kwargs) numpy.ndarray

Fit to data and return the embedding. Same parameters as the fit method.

Returns

embedding – Embedding.

Return type

np.ndarray

get_params()

Get parameters as dictionary.

Returns

params – Parameters of the algorithm.

Return type

dict

Predict the embedding of new nodes.

Each new node is defined by its adjacency row vector.

Parameters

adjacency_vectors – Adjacency vectors of nodes. Array of shape (n_col,) (single vector) or (n_vectors, n_col)

Returns

embedding_vectors – Embedding of the nodes.

Return type

np.ndarray

set_params(params: dict) sknetwork.base.Algorithm

Set parameters of the algorithm.

Parameters

params (dict) – Parameters of the algorithm.

Returns

self

Return type

Algorithm

## Force Atlas

class sknetwork.embedding.ForceAtlas(n_components: int = 2, n_iter: int = 50, approx_radius: float = - 1, lin_log: bool = False, gravity_factor: float = 0.01, repulsive_factor: float = 0.1, tolerance: float = 0.1, speed: float = 0.1, speed_max: float = 10)[source]

Force Atlas layout for displaying graphs.

Parameters
• n_components (int) – Dimension of the graph layout.

• n_iter (int) – Number of iterations to update positions. If None, use the value of self.n_iter.

• approx_radius (float) – If a positive value is provided, only the nodes within this distance a given node are used to compute the repulsive force.

• lin_log (bool) – If True, use lin-log mode.

• gravity_factor (float) – Gravity force scaling constant.

• repulsive_factor (float) – Repulsive force scaling constant.

• tolerance (float) – Tolerance defined in the swinging constant.

• speed (float) – Speed constant.

• speed_max (float) – Constant used to impose constrain on speed.

Variables

embedding_ (np.ndarray) – Layout in given dimension.

Example

>>> from sknetwork.embedding.force_atlas import ForceAtlas
>>> from sknetwork.data import karate_club
>>> force_atlas = ForceAtlas()
>>> embedding.shape
(34, 2)


References

Jacomy M., Venturini T., Heymann S., Bastian M. (2014). ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software. Plos One.

fit(adjacency: Union[scipy.sparse._csr.csr_matrix, numpy.ndarray], pos_init: Optional[numpy.ndarray] = None, n_iter: Optional[int] = None) [source]

Compute layout.

Parameters

• n_iter (int) – Number of iterations to update positions. If None, use the value of self.n_iter.

Returns

self

Return type

ForceAtlas

fit_transform(*args, **kwargs) numpy.ndarray

Fit to data and return the embedding. Same parameters as the fit method.

Returns

embedding – Embedding.

Return type

np.ndarray

get_params()

Get parameters as dictionary.

Returns

params – Parameters of the algorithm.

Return type

dict

Predict the embedding of new nodes.

Each new node is defined by its adjacency row vector.

Parameters

adjacency_vectors – Adjacency vectors of nodes. Array of shape (n_col,) (single vector) or (n_vectors, n_col)

Returns

embedding_vectors – Embedding of the nodes.

Return type

np.ndarray

set_params(params: dict) sknetwork.base.Algorithm

Set parameters of the algorithm.

Parameters

params (dict) – Parameters of the algorithm.

Returns

self

Return type

Algorithm

## Spring

class sknetwork.embedding.Spring(n_components: int = 2, strength: Optional[float] = None, n_iter: int = 50, tol: float = 0.0001, approx_radius: float = - 1, position_init: str = 'random')[source]

Spring layout for displaying small graphs.

Parameters
• n_components (int) – Dimension of the graph layout.

• strength (float) – Intensity of the force that moves the nodes.

• n_iter (int) – Number of iterations to update positions.

• tol (float) – Minimum relative change in positions to continue updating.

• approx_radius (float) – If a positive value is provided, only the nodes within this distance a given node are used to compute the repulsive force.

• position_init (str) – How to initialize the layout. If ‘spectral’, use Spectral embedding in dimension 2, otherwise, use random initialization.

Variables

embedding_ (np.ndarray) – Layout.

Example

>>> from sknetwork.embedding import Spring
>>> from sknetwork.data import karate_club
>>> spring = Spring()
>>> embedding.shape
(34, 2)


Notes

Simple implementation designed to display small graphs.

References

Fruchterman, T. M. J., Reingold, E. M. (1991). Graph Drawing by Force-Directed Placement. Software – Practice & Experience.

fit(adjacency: Union[scipy.sparse._csr.csr_matrix, numpy.ndarray], position_init: Optional[numpy.ndarray] = None, n_iter: Optional[int] = None) [source]

Compute layout.

Parameters

• position_init (np.ndarray) – Custom initial positions of the nodes. Shape must be (n, 2). If None, use the value of self.pos_init.

• n_iter (int) – Number of iterations to update positions. If None, use the value of self.n_iter.

Returns

self

Return type

Spring

fit_transform(*args, **kwargs) numpy.ndarray

Fit to data and return the embedding. Same parameters as the fit method.

Returns

embedding – Embedding.

Return type

np.ndarray

get_params()

Get parameters as dictionary.

Returns

params – Parameters of the algorithm.

Return type

dict

Predict the embedding of new rows, defined by their adjacency vectors.

Parameters

adjacency_vectors – Adjacency vectors of nodes. Array of shape (n_col,) (single vector) or (n_vectors, n_col)

Returns

embedding_vectors – Embedding of the nodes.

Return type

np.ndarray

set_params(params: dict) sknetwork.base.Algorithm

Set parameters of the algorithm.

Parameters

params (dict) – Parameters of the algorithm.

Returns

self

Return type

Algorithm