Source code for sknetwork.utils.neighbors

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on December 29, 2020
@author: Thomas Bonald <bonald@enst.fr>
"""
import numpy as np
from scipy import sparse


[docs] def get_neighbors(input_matrix: sparse.csr_matrix, node: int, transpose: bool = False) -> np.ndarray: """Get the neighbors of a node. If the graph is directed, returns the vector of successors. Set ``transpose=True`` to get the predecessors. For a biadjacency matrix, returns the neighbors of a row node. Set ``transpose=True`` to get the neighbors of a column node. Parameters ---------- input_matrix : sparse.csr_matrix Adjacency or biadjacency matrix. node : int Target node. transpose : If ``True``, transpose the input matrix. Returns ------- neighbors : np.ndarray Array of neighbors of the target node. Example ------- >>> from sknetwork.data import house >>> adjacency = house() >>> get_neighbors(adjacency, node=0) array([1, 4], dtype=int32) """ if transpose: matrix = sparse.csr_matrix(input_matrix.T) else: matrix = input_matrix neighbors = matrix.indices[matrix.indptr[node]: matrix.indptr[node + 1]] return neighbors
[docs] def get_degrees(input_matrix: sparse.csr_matrix, transpose: bool = False) -> np.ndarray: """Get the vector of degrees of a graph. If the graph is directed, returns the out-degrees (number of successors). Set ``transpose=True`` to get the in-degrees (number of predecessors). For a biadjacency matrix, returns the degrees of rows. Set ``transpose=True`` to get the degrees of columns. Parameters ---------- input_matrix : sparse.csr_matrix Adjacency or biadjacency matrix. transpose : If ``True``, transpose the input matrix. Returns ------- degrees : np.ndarray Array of degrees. Example ------- >>> from sknetwork.data import house >>> adjacency = house() >>> get_degrees(adjacency) array([2, 3, 2, 2, 3], dtype=int32) """ if transpose: matrix = sparse.csr_matrix(input_matrix.T) else: matrix = input_matrix degrees = matrix.indptr[1:] - matrix.indptr[:-1] return degrees
[docs] def get_weights(input_matrix: sparse.csr_matrix, transpose: bool = False) -> np.ndarray: """Get the vector of weights of the nodes of a graph. If the graph is not weighted, return the vector of degrees. If the graph is directed, returns the out-weights (total weight of outgoing links). Set ``transpose=True`` to get the in-weights (total weight of incoming links). For a biadjacency matrix, returns the weights of rows. Set ``transpose=True`` to get the weights of columns. Parameters ---------- input_matrix : sparse.csr_matrix Adjacency or biadjacency matrix. transpose : If ``True``, transpose the input matrix. Returns ------- weights : np.ndarray Array of weights. Example ------- >>> from sknetwork.data import house >>> adjacency = house() >>> get_weights(adjacency) array([2., 3., 2., 2., 3.]) """ if transpose: matrix = sparse.csr_matrix(input_matrix.T) else: matrix = input_matrix weights = matrix.dot(np.ones(matrix.shape[1])) return weights