Source code for sknetwork.utils.format

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created in April 2019
@author: Nathan de Lara <nathan.delara@polytechnique.org>
"""
from typing import Union, Tuple, Optional

import numpy as np
from scipy import sparse

from sknetwork.linalg.sparse_lowrank import SparseLR
from sknetwork.utils.check import check_format, is_square, is_symmetric
from sknetwork.utils.values import stack_values, get_values


def check_csr_or_slr(adjacency):
    """Check if input is csr or SparseLR and raise an error otherwise."""
    if type(adjacency) not in [sparse.csr_matrix, SparseLR]:
        raise TypeError('Input must be a scipy CSR matrix or a SparseLR object.')


[docs] def directed2undirected(adjacency: Union[sparse.csr_matrix, SparseLR], weighted: bool = True) -> Union[sparse.csr_matrix, SparseLR]: """Adjacency matrix of the undirected graph associated with some directed graph. The new adjacency matrix becomes either: :math:`A+A^T` (default) or :math:`\\max(A,A^T) > 0` (binary) If the initial adjacency matrix :math:`A` is binary, bidirectional edges have weight 2 (first method, default) or 1 (second method). Parameters ---------- adjacency : Adjacency matrix. weighted : If ``True``, return the sum of the weights in both directions of each edge. Returns ------- new_adjacency : New adjacency matrix (same format as input). """ check_csr_or_slr(adjacency) if type(adjacency) == sparse.csr_matrix: if weighted: if adjacency.data.dtype == float: data_type = float else: data_type = int new_adjacency = adjacency.astype(data_type) new_adjacency += adjacency.T else: new_adjacency = (adjacency + adjacency.T).astype(bool) new_adjacency.tocsr().sort_indices() return new_adjacency else: if weighted: new_tuples = [(y, x) for (x, y) in adjacency.low_rank_tuples] return SparseLR(directed2undirected(adjacency.sparse_mat), adjacency.low_rank_tuples + new_tuples) else: raise ValueError('This function only works with ``weighted=True`` for SparseLR objects.')
[docs] def bipartite2directed(biadjacency: Union[sparse.csr_matrix, SparseLR]) -> Union[sparse.csr_matrix, SparseLR]: """Adjacency matrix of the directed graph associated with a bipartite graph (with edges from one part to the other). The returned adjacency matrix is: :math:`A = \\begin{bmatrix} 0 & B \\\\ 0 & 0 \\end{bmatrix}` where :math:`B` is the biadjacency matrix. Parameters ---------- biadjacency : Biadjacency matrix of the graph. Returns ------- adjacency : Adjacency matrix (same format as input). """ check_csr_or_slr(biadjacency) n_row, n_col = biadjacency.shape if type(biadjacency) == sparse.csr_matrix: adjacency = sparse.bmat([[None, biadjacency], [sparse.csr_matrix((n_col, n_row)), None]], format='csr') adjacency.sort_indices() return adjacency else: new_tuples = [(np.hstack((x, np.zeros(n_col))), np.hstack((np.zeros(n_row), y))) for (x, y) in biadjacency.low_rank_tuples] return SparseLR(bipartite2directed(biadjacency.sparse_mat), new_tuples)
[docs] def bipartite2undirected(biadjacency: Union[sparse.csr_matrix, SparseLR]) -> Union[sparse.csr_matrix, SparseLR]: """Adjacency matrix of a bigraph defined by its biadjacency matrix. The returned adjacency matrix is: :math:`A = \\begin{bmatrix} 0 & B \\\\ B^T & 0 \\end{bmatrix}` where :math:`B` is the biadjacency matrix of the bipartite graph. Parameters ---------- biadjacency: Biadjacency matrix of the graph. Returns ------- adjacency : Adjacency matrix (same format as input). """ check_csr_or_slr(biadjacency) if type(biadjacency) == sparse.csr_matrix: adjacency = sparse.bmat([[None, biadjacency], [biadjacency.T, None]], format='csr') adjacency.sort_indices() return adjacency else: n_row, n_col = biadjacency.shape new_tuples = [] for (x, y) in biadjacency.low_rank_tuples: new_tuples.append((np.hstack((x, np.zeros(n_col))), np.hstack((np.zeros(n_row), y)))) new_tuples.append((np.hstack((np.zeros(n_row), y)), np.hstack((x, np.zeros(n_col))))) return SparseLR(bipartite2undirected(biadjacency.sparse_mat), new_tuples)
def get_adjacency(input_matrix: Union[sparse.csr_matrix, np.ndarray], allow_directed: bool = True, force_bipartite: bool = False, force_directed: bool = False, allow_empty: bool = False)\ -> Tuple[sparse.csr_matrix, bool]: """Check the input matrix and return a proper adjacency matrix. Parameters ---------- input_matrix : Adjacency matrix of biadjacency matrix of the graph. allow_directed : If ``True`` (default), allow the graph to be directed. force_bipartite : bool If ``True``, return the adjacency matrix of a bipartite graph. Otherwise (default), do it only if the input matrix is not square or not symmetric with ``allow_directed=False``. force_directed : If ``True`` return :math:`A = \\begin{bmatrix} 0 & B \\\\ 0 & 0 \\end{bmatrix}`. Otherwise (default), return :math:`A = \\begin{bmatrix} 0 & B \\\\ B^T & 0 \\end{bmatrix}`. allow_empty : If ``True``, allow the input matrix to be empty. """ input_matrix = check_format(input_matrix, allow_empty=allow_empty) bipartite = False if force_bipartite or not is_square(input_matrix) or not (allow_directed or is_symmetric(input_matrix)): bipartite = True if bipartite: if force_directed: adjacency = bipartite2directed(input_matrix) else: adjacency = bipartite2undirected(input_matrix) else: adjacency = input_matrix return adjacency, bipartite def get_adjacency_values(input_matrix: Union[sparse.csr_matrix, np.ndarray], allow_directed: bool = True, force_bipartite: bool = False, force_directed: bool = False, values: Optional[Union[dict, np.ndarray]] = None, values_row: Optional[Union[dict, np.ndarray]] = None, values_col: Optional[Union[dict, np.ndarray]] = None, default_value: float = -1, which: Optional[str] = None) \ -> Tuple[sparse.csr_matrix, np.ndarray, bool]: """Check the input matrix and return a proper adjacency matrix and vector of values. Parameters ---------- input_matrix : Adjacency matrix of biadjacency matrix of the graph. allow_directed : If ``True`` (default), allow the graph to be directed. force_bipartite : bool If ``True``, return the adjacency matrix of a bipartite graph. Otherwise (default), do it only if the input matrix is not square or not symmetric with ``allow_directed=False``. force_directed : If ``True`` return :math:`A = \\begin{bmatrix} 0 & B \\\\ 0 & 0 \\end{bmatrix}`. Otherwise (default), return :math:`A = \\begin{bmatrix} 0 & B \\\\ B^T & 0 \\end{bmatrix}`. values : Values of nodes (dictionary or vector). Negative values ignored. values_row, values_col : Values of rows and columns for bipartite graphs. Negative values ignored. default_value : Default value of nodes (default = -1). which : Which values. If ``'probs'``, return a probability distribution. If ``'labels'``, return the values, or distinct integer values if all are the same. """ input_matrix = check_format(input_matrix) if values_row is not None or values_col is not None: force_bipartite = True adjacency, bipartite = get_adjacency(input_matrix, allow_directed=allow_directed, force_bipartite=force_bipartite, force_directed=force_directed) if bipartite: if values is None: values = stack_values(input_matrix.shape, values_row, values_col, default_value=default_value) else: values = stack_values(input_matrix.shape, values, default_value=default_value) else: values = get_values(input_matrix.shape, values, default_value=default_value) if which == 'probs': if values.sum() > 0: values /= values.sum() elif which == 'labels': if len(set(values[values >= 0])) == 1: values = np.arange(len(values)) return adjacency, values, bipartite