Source code for sknetwork.topology.weisfeiler_lehman

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created in July 2020
@author: Pierre Pebereau <pierre.pebereau@telecom-paris.fr>
@author: Alexis Barreaux <alexis.barreaux@telecom-paris.fr>
"""
from typing import Union

import numpy as np
from scipy import sparse

from sknetwork.topology.weisfeiler_lehman_core import weisfeiler_lehman_coloring
from sknetwork.utils.check import check_format, check_square


[docs] def color_weisfeiler_lehman(adjacency: Union[sparse.csr_matrix, np.ndarray], max_iter: int = -1) -> np.ndarray: """Color nodes using Weisfeiler-Lehman algorithm. Parameters ---------- adjacency : sparse.csr_matrix Adjacency matrix of the graph max_iter : int Maximum number of iterations. Negative value means no limit (until convergence). Returns ------- labels : np.ndarray Label of each node. Example ------- >>> from sknetwork.data import house >>> adjacency = house() >>> labels = color_weisfeiler_lehman(adjacency) >>> print(labels) [0 2 1 1 2] References ---------- * Douglas, B. L. (2011). `The Weisfeiler-Lehman Method and Graph Isomorphism Testing. <https://arxiv.org/pdf/1101.5211.pdf>`_ * Shervashidze, N., Schweitzer, P., van Leeuwen, E. J., Melhorn, K., Borgwardt, K. M. (2011) `Weisfeiler-Lehman graph kernels. <https://www.jmlr.org/papers/volume12/shervashidze11a/shervashidze11a.pdf>`_ Journal of Machine Learning Research 12, 2011. """ adjacency = check_format(adjacency, allow_empty=True) check_square(adjacency) n_nodes = adjacency.shape[0] if max_iter < 0 or max_iter > n_nodes: max_iter = n_nodes labels = np.zeros(n_nodes, dtype=np.int32) powers = (-np.pi / 3.15) ** np.arange(n_nodes, dtype=np.double) indptr = adjacency.indptr indices = adjacency.indices labels, _ = weisfeiler_lehman_coloring(indptr, indices, labels, powers, max_iter) return np.array(labels)
[docs] def are_isomorphic(adjacency1: sparse.csr_matrix, adjacency2: sparse.csr_matrix, max_iter: int = -1) -> bool: """Weisfeiler-Lehman isomorphism test. If the test is False, the graphs cannot be isomorphic. Parameters ----------- adjacency1 : First adjacency matrix. adjacency2 : Second adjacency matrix. max_iter : int Maximum number of iterations. Negative value means no limit (until convergence). Returns ------- test_result : bool Example ------- >>> from sknetwork.data import house, bow_tie >>> are_isomorphic(house(), bow_tie()) False References ---------- * Douglas, B. L. (2011). `The Weisfeiler-Lehman Method and Graph Isomorphism Testing. <https://arxiv.org/pdf/1101.5211.pdf>`_ * Shervashidze, N., Schweitzer, P., van Leeuwen, E. J., Melhorn, K., Borgwardt, K. M. (2011) `Weisfeiler-Lehman graph kernels. <https://www.jmlr.org/papers/volume12/shervashidze11a/shervashidze11a.pdf>`_ Journal of Machine Learning Research 12, 2011. """ adjacency1 = check_format(adjacency1) check_square(adjacency1) adjacency2 = check_format(adjacency2) check_square(adjacency2) if (adjacency1.shape != adjacency2.shape) or (adjacency1.nnz != adjacency2.nnz): return False n_nodes = adjacency1.shape[0] if max_iter < 0 or max_iter > n_nodes: max_iter = n_nodes indptr1 = adjacency1.indptr indptr2 = adjacency2.indptr indices1 = adjacency1.indices indices2 = adjacency2.indices labels1 = np.zeros(n_nodes, dtype=np.int32) labels2 = np.zeros(n_nodes, dtype=np.int32) powers = (-np.pi / 3.15) ** np.arange(n_nodes, dtype=np.double) iteration = 0 has_changed1, has_changed2 = True, True while iteration < max_iter and (has_changed1 or has_changed2): labels1, has_changed1 = weisfeiler_lehman_coloring(indptr1, indices1, labels1, powers, max_iter=1) labels2, has_changed2 = weisfeiler_lehman_coloring(indptr2, indices2, labels2, powers, max_iter=1) _, counts1 = np.unique(np.array(labels1), return_counts=True) _, counts2 = np.unique(np.array(labels2), return_counts=True) if (counts1 != counts2).any(): return False iteration += 1 return True