Source code for sknetwork.ranking.katz

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on May 2020
@author: Nathan de Lara <nathan.delara@polytechnique.org>
"""
from typing import Union

import numpy as np
from scipy import sparse
from scipy.sparse.linalg import LinearOperator

from sknetwork.linalg.polynome import Polynome
from sknetwork.ranking.base import BaseRanking
from sknetwork.utils.check import check_format
from sknetwork.utils.format import get_adjacency


[docs] class Katz(BaseRanking): """Katz centrality, defined by: :math:`\\sum_{k=1}^K\\alpha^k(A^k)^T\\mathbf{1}` where :math:`A` is the adjacency matrix, :math:`\\alpha` is the damping factor and :math:`K` is the path length. Parameters ---------- damping_factor : float Damping factor for path contributions. path_length : int Maximum length of the paths. Attributes ---------- scores_ : np.ndarray Score of each node. scores_row_: np.ndarray Scores of rows, for bipartite graphs. scores_col_: np.ndarray Scores of columns, for bipartite graphs. Examples -------- >>> from sknetwork.data.toy_graphs import house >>> adjacency = house() >>> katz = Katz() >>> scores = katz.fit_predict(adjacency) >>> np.round(scores, 2) array([6.5 , 8.25, 5.62, 5.62, 8.25]) References ---------- Katz, L. (1953). `A new status index derived from sociometric analysis <https://link.springer.com/content/pdf/10.1007/BF02289026.pdf>`_. Psychometrika, 18(1), 39-43. """ def __init__(self, damping_factor: float = 0.5, path_length: int = 4): super(Katz, self).__init__() self.damping_factor = damping_factor self.path_length = path_length self.bipartite = None
[docs] def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray, LinearOperator]) -> 'Katz': """Katz centrality. Parameters ---------- input_matrix : Adjacency matrix or biadjacency matrix of the graph. Returns ------- self: :class:`Katz` """ input_matrix = check_format(input_matrix) adjacency, self.bipartite = get_adjacency(input_matrix) n = adjacency.shape[0] coefs = self.damping_factor ** np.arange(self.path_length + 1) coefs[0] = 0. polynome = Polynome(adjacency.T.astype(bool).tocsr(), coefs) self.scores_ = polynome.dot(np.ones(n)) if self.bipartite: self._split_vars(input_matrix.shape) return self