Source code for sknetwork.linalg.svd_solver

#!/usr/bin/env python3
# coding: utf-8
"""
Created on July 10 2019

Authors:
Nathan De Lara <nathan.delara@telecom-paris.fr>
"""
from abc import ABC
from typing import Union

import numpy as np
from scipy import sparse
from scipy.sparse.linalg import svds

from sknetwork.base import Algorithm


class SVDSolver(Algorithm, ABC):
    """Generic class for SVD-solvers.

    Attributes
    ----------
    singular_vectors_left_: np.ndarray
        Two-dimensional array, each column is a left singular vector of the input.
    singular_vectors_right_: np.ndarray
        Two-dimensional array, each column is a right singular vector of the input.
    singular_values_: np.ndarray
        Singular values.
    """
    def __init__(self):
        self.singular_vectors_left_ = None
        self.singular_vectors_right_ = None
        self.singular_values_ = None


[docs] class LanczosSVD(SVDSolver): """SVD solver using Lanczos method on :math:`AA^T` or :math:`A^TA`. Parameters ---------- n_iter : int Maximum number of Arnoldi update iterations allowed. Default = 10 * nb or rows or columns. tol : float Relative accuracy for eigenvalues (stopping criterion). Default = 0 (machine precision). Attributes ---------- singular_vectors_left_: np.ndarray Two-dimensional array, each column is a left singular vector of the input. singular_vectors_right_: np.ndarray Two-dimensional array, each column is a right singular vector of the input. singular_values_: np.ndarray Singular values. See Also -------- scipy.sparse.linalg.svds """ def __init__(self, n_iter: int = None, tol: float = 0.): super(LanczosSVD, self).__init__() self.n_iter = n_iter self.tol = tol
[docs] def fit(self, matrix: Union[sparse.csr_matrix, sparse.linalg.LinearOperator], n_components: int, init_vector: np.ndarray = None): """Perform singular value decomposition on input matrix. Parameters ---------- matrix : Matrix to decompose. n_components : int Number of singular values to compute init_vector : np.ndarray Starting vector for iteration. Default = random. Returns ------- self: :class:`SVDSolver` """ u, s, vt = svds(matrix.astype(float), n_components, v0=init_vector) # order the singular values by decreasing order index = np.argsort(-s) self.singular_vectors_left_ = u[:, index] self.singular_vectors_right_ = vt.T[:, index] self.singular_values_ = s[index] return self