Source code for sknetwork.gnn.base_activation

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on April 2022
@author: Simon Delarue <sdelarue@enst.fr>
"""
import numpy as np


[docs] class BaseActivation: """Base class for activation functions. Parameters ---------- name : str Name of the activation function. """ def __init__(self, name: str = 'custom'): self.name = name
[docs] @staticmethod def output(signal: np.ndarray) -> np.ndarray: """Output of the activation function. Parameters ---------- signal : np.ndarray, shape (n_samples, n_channels) Input signal. Returns ------- output : np.ndarray, shape (n_samples, n_channels) Output signal. """ output = signal return output
[docs] @staticmethod def gradient(signal: np.ndarray, direction: np.ndarray) -> np.ndarray: """Gradient of the activation function. Parameters ---------- signal : np.ndarray, shape (n_samples, n_channels) Input signal. direction : np.ndarray, shape (n_samples, n_channels) Direction where the gradient is taken. Returns ------- gradient : np.ndarray, shape (n_samples, n_channels) Gradient. """ gradient = direction return gradient
[docs] class BaseLoss(BaseActivation): """Base class for loss functions."""
[docs] @staticmethod def loss(signal: np.ndarray, labels: np.ndarray) -> float: """Get the loss value. Parameters ---------- signal : np.ndarray, shape (n_samples, n_channels) Input signal (before activation). labels : np.ndarray, shape (n_samples) True labels. """ return 0
[docs] @staticmethod def loss_gradient(signal: np.ndarray, labels: np.ndarray) -> np.ndarray: """Gradient of the loss function. Parameters ---------- signal : np.ndarray, shape (n_samples, n_channels) Input signal. labels : np.ndarray, shape (n_samples,) True labels. Returns ------- gradient : np.ndarray, shape (n_samples, n_channels) Gradient. """ gradient = np.ones_like(signal) return gradient