Source code for sknetwork.clustering.kcenters

"""
Created in March 2024
@author: Laurène David <laurene.david@ip-paris.fr>
@author: Thomas Bonald <bonald@enst.fr>
"""

from typing import Union

import numpy as np
from scipy import sparse

from sknetwork.clustering import BaseClustering
from sknetwork.ranking import PageRank
from sknetwork.clustering import get_modularity
from sknetwork.classification.pagerank import PageRankClassifier
from sknetwork.utils.format import get_adjacency, directed2undirected


[docs] class KCenters(BaseClustering): """K-center clustering algorithm. The center of each cluster is obtained by the PageRank algorithm. Parameters ---------- n_clusters : int Number of clusters. directed : bool, default False If ``True``, the graph is considered directed. center_position : str, default "row" Force centers to correspond to the nodes on the rows or columns of the biadjacency matrix. Can be ``row``, ``col`` or ``both``. Only considered for bipartite graphs. n_init : int, default 5 Number of reruns of the k-centers algorithm with different centers. The run that produce the best modularity is chosen as the final result. max_iter : int, default 20 Maximum number of iterations of the k-centers algorithm for a single run. Attributes ---------- labels_ : np.ndarray, shape (n_nodes,) Label of each node. labels_row_, labels_col_ : np.ndarray Labels of rows and columns, for bipartite graphs. centers_ : np.ndarray, shape (n_nodes,) Cluster centers. centers_row_, centers_col_ : np.ndarray Cluster centers of rows and columns, for bipartite graphs. Example ------- >>> from sknetwork.clustering import KCenters >>> from sknetwork.data import karate_club >>> kcenters = KCenters(n_clusters=2) >>> adjacency = karate_club() >>> labels = kcenters.fit_predict(adjacency) >>> len(set(labels)) 2 """ def __init__(self, n_clusters: int, directed: bool = False, center_position: str = "row", n_init: int = 5, max_iter: int = 20): super(BaseClustering, self).__init__() self.n_clusters = n_clusters self.directed = directed self.bipartite = None self.center_position = center_position self.n_init = n_init self.max_iter = max_iter self.labels_ = None self.centers_ = None self.centers_row_ = None self.centers_col_ = None def _compute_mask_centers(self, input_matrix: Union[sparse.csr_matrix, np.ndarray]): """Generate mask to filter nodes that can be cluster centers. Parameters ---------- input_matrix : Adjacency matrix or biadjacency matrix of the graph. Return ------ mask : np.array, shape (n_nodes,) Mask for possible cluster centers. """ n_row, n_col = input_matrix.shape if self.bipartite: n_nodes = n_row + n_col mask = np.zeros(n_nodes, dtype=bool) if self.center_position == "row": mask[:n_row] = True elif self.center_position == "col": mask[n_row:] = True elif self.center_position == "both": mask[:] = True else: raise ValueError('Unknown center position') else: mask = np.ones(n_row, dtype=bool) return mask @staticmethod def _init_centers(adjacency: Union[sparse.csr_matrix, np.ndarray], mask: np.ndarray, n_clusters: int): """ Kcenters++ initialization to select cluster centers. This algorithm is an adaptation of the Kmeans++ algorithm to graphs. Parameters ---------- adjacency : Adjacency matrix of the graph. mask : Initial mask for allowed positions of centers. n_clusters : int Number of centers to initialize. Returns --------- centers : np.array, shape (n_clusters,) Initial cluster centers. """ mask = mask.copy() n_nodes = adjacency.shape[0] nodes = np.arange(n_nodes) centers = [] # Choose the first center uniformly at random center = np.random.choice(nodes[mask]) mask[center] = 0 centers.append(center) pagerank = PageRank() weights = {center: 1} for k in range(n_clusters - 1): # select nodes that are far from existing centers ppr_scores = pagerank.fit_predict(adjacency, weights) ppr_scores = ppr_scores[mask] if min(ppr_scores) == 0: center = np.random.choice(nodes[mask][ppr_scores == 0]) else: probs = 1 / ppr_scores probs = probs / np.sum(probs) center = np.random.choice(nodes[mask], p=probs) mask[center] = 0 centers.append(center) weights.update({center: 1}) centers = np.array(centers) return centers
[docs] def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray], force_bipartite: bool = False) -> "KCenters": """Compute the clustering of the graph by k-centers. Parameters ---------- input_matrix : Adjacency matrix or biadjacency matrix of the graph. force_bipartite : If ``True``, force the input matrix to be considered as a biadjacency matrix even if square. Returns ------- self : :class:`KCenters` """ if self.n_clusters < 2: raise ValueError("The number of clusters must be at least 2.") if self.n_init < 1: raise ValueError("The n_init parameter must be at least 1.") if self.directed: input_matrix = directed2undirected(input_matrix) adjacency, self.bipartite = get_adjacency(input_matrix, force_bipartite=force_bipartite) n_row = input_matrix.shape[0] n_nodes = adjacency.shape[0] nodes = np.arange(n_nodes) mask = self._compute_mask_centers(input_matrix) if self.n_clusters > np.sum(mask): raise ValueError("The number of clusters is to high. This might be due to the center_position parameter.") pagerank_clf = PageRankClassifier() pagerank = PageRank() labels_ = [] centers_ = [] modularity_ = [] # Restarts for i in range(self.n_init): # Initialization centers = self._init_centers(adjacency, mask, self.n_clusters) prev_centers = None labels = None n_iter = 0 while not np.equal(prev_centers, centers).all() and (n_iter < self.max_iter): # Assign nodes to centers labels_center = {center: label for label, center in enumerate(centers)} labels = pagerank_clf.fit_predict(adjacency, labels_center) # Find new centers prev_centers = centers.copy() new_centers = [] for label in np.unique(labels): mask_cluster = labels == label mask_cluster &= mask scores = pagerank.fit_predict(adjacency, weights=mask_cluster) scores[~mask_cluster] = 0 new_centers.append(nodes[np.argmax(scores)]) n_iter += 1 # Store results if self.bipartite: labels_row = labels[:n_row] labels_col = labels[n_row:] modularity = get_modularity(input_matrix, labels_row, labels_col) else: modularity = get_modularity(adjacency, labels) labels_.append(labels) centers_.append(centers) modularity_.append(modularity) # Select restart with the highest modularity idx_max = np.argmax(modularity_) self.labels_ = np.array(labels_[idx_max]) self.centers_ = np.array(centers_[idx_max]) if self.bipartite: self._split_vars(input_matrix.shape) # Define centers based on center position if self.center_position == "row": self.centers_row_ = self.centers_ elif self.center_position == "col": self.centers_col_ = self.centers_ - n_row else: self.centers_row_ = self.centers_[self.centers_ < n_row] self.centers_col_ = self.centers_[~np.isin(self.centers_, self.centers_row_)] - n_row return self